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Abstract 

This study proposes a two-stage framework for improving 
the detection of Chagas disease under conditions of scarce 
and imbalanced data. In Stage1, a ResNet18-based binary 
classification model was trained to estimate abnormality 
scores from 12-lead electrocardiograms, with simulator-
generated synthetic ECGs incorporated to supplement 
underrepresented classes. In Stage2, these abnormality 
scores were combined with age and sex to form tabular 
features, which were then classified using a random forest 
and XGBoost model. The framework demonstrated 
improved detection performance through lead 
optimization and synthetic data augmentation. These 
results highlight the potential of integrating deep learning 
with simulation-based approaches to enhance Chagas 
disease screening in resource-limited settings. 
This article is part of Detection of Chagas Disease from 

the ECG: The George B. Moody PhysioNet Challenge 
2025[1] [2] [3]. The team name was RISMU. The team 
could not be scored on the hidden test data within the 
allotted test time and therefore was not ranked. 
 (Abbreviations: ECG, electrocardiogram; DNN, deep 
neural network; AUROC, area under the receiver 
operating characteristic.) 
 
1.  Introduction 

Serological testing remains the gold standard for 
diagnosing Chagas disease; however, access is often 
limited in resource-constrained regions [4]. Hence, 
supplementary methods that efficiently identify high-
priority individuals are needed. Electrocardiography 
(ECG), being non-invasive and low-cost, represents a 
valuable alternative that reflects conduction abnormalities 
and arrhythmias frequently observed in Chagas disease, 
which can be leveraged for automated risk estimation . 
With advances in deep learning, the accuracy of automated 
ECG analysis has markedly improved. Deep neural 
networks (DNNs) trained in a supervised manner can 
achieve high precision in classifying diverse ECG 

abnormalities when provided with large-scale labeled 
datasets. Nevertheless, their performance critically 
depends on the availability of high-quality labeled data, the 
creation of which requires expertise, cost, and effort. As a 
result, rare diseases and distinctive waveform patterns are 
often underrepresented, potentially limiting model 
generalizability, especially in the case of disease-specific 
patterns such as those found in Chagas disease. 
To address this challenge, synthetic data generation using 

ECG simulators based on known abnormal waveform 
morphologies has attracted growing attention. Combining 
synthetic and real data has been shown to enhance 
performance in tasks such as arrhythmia detection and 
myocardial infarction and is particularly effective for rare 
or underrepresented waveform patterns [5]. 
In this study, we propose a two-stage framework to 

improve the detection performance of Chagas disease in 
environments characterized by scarce and imbalanced data. 
In the first stage (Stage 1), a binary classification model 
estimates abnormal ECG scores associated with Chagas 
disease. In the second stage (Stage 2), these scores are 
combined with demographic features such as age and sex 
to predict disease presence. Furthermore, for abnormalities 
insufficiently represented in the real datasets, synthetic 
ECGs generated by a simulator are incorporated as 
supplementary training data. 
The aim of this study is to enhance the detection accuracy 

of Chagas disease under limited data conditions through a 
two-stage approach that integrates deep learning with 
simulator-based synthetic data generation. 
 
2. Methods 

The proposed framework consisted of two stages: Stage1 
for estimating ECG abnormality scores and Stage2 for 
binary classification of Chagas disease. 
In Stage1, we constructed a binary classification model to 

quantitatively evaluate ECG abnormalities associated with 
Chagas disease. A ResNet18[6] architecture was employed, 
with 12-lead ECGs as input, and preprocessing was applied 
for each targeted abnormality class. A Sigmoid activation 
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function was placed in the output layer to compute scores 
corresponding to the abnormality labels. No handcrafted 
features were designed; instead, raw ECG waveforms were 
directly used as input. The resulting output scores were 
stored as pseudo-labels and subsequently used as input 
features for Stage2. 
To address the severe class imbalance in real-world data, 

synthetic ECGs were generated for abnormalities 
underrepresented in Chagas disease. These synthetic 
signals were produced using a simulator based on Gaussian 
distributions and physiological parameters, following the 
method reported by Nonaka et al [5]. The generated 
synthetic data were incorporated as supplementary training 
data in Stage1. 
In Stage2, a binary classification task was performed to 

predict the presence or absence of Chagas disease. Raw 
ECG waveforms were not directly utilized; instead, the 
pseudo-labels derived from Stage1 were combined with 
demographic features. Specifically, the features consisted 
of the Stage1 output scores, age (scaled by 100), and sex 
(encoded as male = 1, female = 0), resulting in a feature 
vector of three dimensions plus the number of abnormal 
ECG classes considered. These features were used to train 
a Random Forest classifier, which estimated the 
probability of Chagas disease in a binary setting. An 
overview of the pipeline is shown in Figure 1. 
 

 
Figure 1. The framework of our proposed method 
 
3.   Tables and figures 

3.1. Datasets 

This study utilized publicly available real-world ECG 
datasets (PTB-XL [7] and SaMi-Trop [8]) in combination 
with synthetic ECG data generated by a simulator. PTB-

XL was employed in both Stage1 and Stage2. In Stage1, it 
was used for training and evaluation of abnormal ECG 
classification, targeting seven labels: first-degree 
atrioventricular block (1AVB), incomplete right bundle 
branch block (IRBBB), complete left bundle branch block 
(CLBBB), long QT interval (LNGQT), acute myocardial 
infarction (AMI), atrial fibrillation (AFIB), and left 
posterior fascicular block (LPR). In Stage2, all PTB-XL 
records were assigned to the negative class based on 
demographic information, whereas SaMi-Trop served as 
the positive class to construct a binary classification task 
for Chagas disease. 
For abnormalities that were present but insufficiently 

represented in the real datasets—namely second-degree 
atrioventricular block (2AVB; Wenckebach type/type II) 
and long QT interval (LNGQT)—synthetic ECGs were 
generated using a simulator capable of reproducing known 
waveform morphologies, thereby supplementing the 
limited real data. 

 
3.2.  Preprocessing 

A unified preprocessing pipeline was applied to all 
datasets. First, the sampling frequency of each ECG signal 
was standardized by resampling through integer averaging 
or linear interpolation, ensuring a uniform target frequency 
of 500 Hz. When the waveform length was insufficient, 
zero-padding was applied to standardize the input 
dimensions. Subsequently, normalization was performed 
by applying z-score standardization (mean = 0, variance = 
1) to each ECG signal, thereby correcting for differences 
in amplitude scaling across recordings. 
 

3.3. Training setup and hyperparameters 

The training was conducted on a Linux system equipped 
with four NVIDIA RTX A5000 GPUs (24GB each), 
CUDA 11.6, and Driver 510.47.03. 
For Stage1, a ResNet18-based multi-label classification 

model was employed. The input consisted of 12-lead ECGs 
(500 Hz, fixed length of 5000 time step), and the output 
layer applied a sigmoid activation function to produce 
scores for seven distinct abnormality labels. The Adam 
optimizer was used, with the binary cross-entropy loss 
function. The initial learning rate was set to 0.0005, 
combined with a cosine annealing scheduler with warm-up. 
Data augmentation was performed by applying both 
temporal shift ratio and signal masking ratio. Training was 
performed for 500 epochs with a batch size of 256, and 
early stopping was implemented with a patience of 5, 
evaluated every five epochs. The learning rate and 
augmentation parameters were explored in preliminary 
experiments, and the optimal values were adopted for 
subsequent training. 
For Stage2, the pseudo-labels obtained from Stage1 were 
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combined with demographic features to construct the 
classification task. Specifically, the input consisted of the 
pseudo-label scores, age, and sex (male = 1, female = 0), 
resulting in a three-dimensional tabular feature vector. A 
Random Forest classifier was employed, with the number 
of decision trees set to 10, 20, or 50, the maximum tree 
depth set to 5, 10, 20, or unrestricted, and class weights set 
either with balancing or without weighting. These 
hyperparameter combinations were explored, and model 
performance was evaluated using five-fold cross-
validation with the area under the receiver operating 
characteristic curve (ROC-AUC) as the primary metric. 

 
3.4. Experimental conditions 

Data split 
For the PTB-XL dataset, the division was based on the 

officially provided strat_fold information. Specifically, 
Folds 1–6 were used as training data for Stage1, Folds 7–8 
as validation data for Stage01, and Folds 9–10 as 
evaluation data for Stage2. For the SaMi-Trop dataset, all 
cases were randomly divided into training, validation, and 
test sets for use in Stage2. 

 
Label 
In Stage1, binary classification was performed for each of 

the seven abnormalities in PTB-XL, namely 1AVB, 
IRBBB, CLBBB, LNGQT, AMI, AFIB, and LPR, based 
on the diagnostic labels provided in the dataset. 
In Stage2, a binary classification task for Chagas disease 

was constructed by assigning all PTB-XL records to the 
negative class and all SaMi-Trop records to the positive 
class. 
 
4. Results 

All results reported in this section were obtained from the 
held-out portion of the training data and not from the 
hidden official test set. 
 
4.1.  Stage1: Optimization of the binary 
classification model 
 
To examine the effect of data augmentation, we 

conducted parameter searches for temporal shift ratio and 
signal masking ratio using first-degree atrioventricular 
block (1AVB) as the target condition. 
The temporal shift ratio was varied from 0.50 to 0.80 in 

increments of 0.05 during training. As a result, considering 
AUROC, F1 score, and loss in combination, a value of 0.55 
was identified as the optimal setting. 
With the temporal shift ratio fixed at 0.55, the signal 

masking ratio was varied between 0.10 and 0.30 in 
increments of 0.05. The best performance was achieved at 
0.20. 

Based on these results, subsequent experiments adopted a 
temporal shift ratio of 0.55 and a signal masking ratio of 
0.20 as the default augmentation settings. 
The classification performance of the ResNet18 model 

showed AUROC values of 0.94 for 1AVB, 0.74 for 
IRBBB, 0.98 for CLBBB, 0.74 for LNGQT, 0.65 for AMI, 
0.98 for AFIB, and 0.93 for LPR. Among these, 1AVB, 
CLBBB, AFIB, and LPR achieved AUROC values greater 
than 0.9. Furthermore, performance improved when input 
leads were optimized, with AUROC increasing to 0.96 for 
IRBBB using the V1 lead and to 0.85 for AMI using all 12 
leads. 
To compensate for abnormalities that were insufficiently 

represented in real data, synthetic ECGs generated by the 
simulator were incorporated. This led to performance 
values of 2AVB= 0.81 and LNGQT = 0.77. 
 
Table1. Classification performance with synthetic ECGs. 
 

 
 

4.2. Stage2: Comparison of binary 
classification models 

 
A total of 21,799 PTB-XL cases were used as negative 

examples, while 1,959 SaMi-Trop cases were used as 
positive examples.  In Stage2, we compared three 
conditions: (i) models using demographic features only, 
(ii) models incorporating abnormality scores derived from 
the Stage1 DNN without synthetic data, and (iii) models 
additionally incorporating synthetic ECGs. The results are 
summarized in Table 2. 

 
Table 2. Challenge score performance of Stage2 binary 
classification models (classification between PTB-XL and 
SaMi-Trop, not the official setting.) 

 

 
 
For the Random Forest classifier, using demographic 

features alone resulted in a challenge score of 0.0871. 
Incorporating DNN-derived abnormality scores without 
synthetic data achieved 0.6147, while incorporating 
synthetic ECGs yielded 0.6098. 
For XGBoost, demographic features alone yielded a 

challenge score of 0.0000. Incorporating DNN-derived 
scores without synthetic data improved performance to 
0.6319, and with synthetic ECGs further improved to 
0.6626. 

with synthetic ECGwithout synthetic ECGAbnormality
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4.3.   Official challenge submission 
 
Table 3. Official Challenge results for team RISMU. 
 

 
Challenge scores for our selected entry (team RISMU), 

including our team’s ranking on the hidden test set. We 
used cross-validation on the public training data and did 
not receive official scores on the hidden validation/test sets. 
The team could not be scored on the hidden test data within 
the allotted test time and therefore was not ranked. 
 
5. Discussion 

In this study, we adopted a two-stage framework to 
capture ECG abnormalities characteristic of Chagas 
disease. In Stage1, a ResNet18-based binary classifier 
estimated abnormality scores. Several abnormalities such 
as 1AVB, CLBBB, AFIB, and LPR achieved AUROC 
values >0.9. Accuracy further improved with tailored lead 
selection: IRBBB detection improved with lead V1, and 
AMI with all 12 leads. For abnormalities with few real 
cases (2AVB, LNGQT), synthetic ECGs were generated. 
As a result, 2AVB achieved an AUROC of 0.81, whereas 
LNGQT improved only slightly (0.74→0.77), reflecting 
the difficulty of reproducing QT prolongation. 
In Stage2, Stage1 abnormality scores were combined with 
demographic features for binary classification using 
Random Forest and XGBoost. Without deep learning–
derived features, performance was negligible. 
Incorporating abnormality scores raised AUROC to 0.5–
0.6, and further adding synthetic data improved it to 0.6626 
with XGBoost. These results indicate that combining 
demographic features with deep learning–based scores is 
beneficial, and that gradient boosting in particular better 
exploits synthetic data. 

 
6. Conclusion 

In this study, we proposed a two-stage framework 
consisting of ECG abnormality score estimation (Stage1) 
and binary classification (Stage2). The model achieved 
high AUROC values across several ECG abnormalities, 
confirming the effectiveness of lead selection and synthetic 
data augmentation. Combining deep learning–derived 
abnormality scores with demographic information 
improved classification performance, with XGBoost 
showing further gains when synthetic data were introduced. 
This work demonstrates that integrating real and synthetic 
data with deep learning can enhance Chagas disease 
screening accuracy under data scarcity. Future work will 
focus on external validation, improvement of synthetic 
ECG generation, and extension to other cardiac disorders 

toward developing a more generalizable screening system. 
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