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Abstract

This study proposes a two-stage framework for improving
the detection of Chagas disease under conditions of scarce
and imbalanced data. In Stagel, a ResNet1§-based binary
classification model was trained to estimate abnormality
scores from 12-lead electrocardiograms, with simulator-
generated synthetic ECGs incorporated to supplement
underrepresented classes. In Stage2, these abnormality
scores were combined with age and sex to form tabular
features, which were then classified using a random forest
and XGBoost model. The framework demonstrated
improved  detection  performance  through lead
optimization and synthetic data augmentation. These
results highlight the potential of integrating deep learning
with simulation-based approaches to enhance Chagas
disease screening in resource-limited settings.

This article is part of Detection of Chagas Disease from
the ECG: The George B. Moody PhysioNet Challenge
2025[1] [2] [3]. The team name was RISMU. The team
could not be scored on the hidden test data within the
allotted test time and therefore was not ranked.
(Abbreviations: ECG, electrocardiogram; DNN, deep
neural network; AUROC, area under the receiver
operating characteristic.)

1. Introduction

Serological testing remains the gold standard for
diagnosing Chagas disease; however, access is often
limited in resource-constrained regions [4]. Hence,
supplementary methods that efficiently identify high-
priority individuals are needed. Electrocardiography
(ECG), being non-invasive and low-cost, represents a
valuable alternative that reflects conduction abnormalities
and arrhythmias frequently observed in Chagas disease,
which can be leveraged for automated risk estimation .
With advances in deep learning, the accuracy of automated
ECG analysis has markedly improved. Deep neural
networks (DNNGs) trained in a supervised manner can
achieve high precision in classifying diverse ECG
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abnormalities when provided with large-scale labeled
datasets. Nevertheless, their performance critically
depends on the availability of high-quality labeled data, the
creation of which requires expertise, cost, and effort. As a
result, rare diseases and distinctive waveform patterns are
often underrepresented, potentially limiting model
generalizability, especially in the case of disease-specific
patterns such as those found in Chagas disease.

To address this challenge, synthetic data generation using
ECG simulators based on known abnormal waveform
morphologies has attracted growing attention. Combining
synthetic and real data has been shown to enhance
performance in tasks such as arrhythmia detection and
myocardial infarction and is particularly effective for rare
or underrepresented waveform patterns [5].

In this study, we propose a two-stage framework to
improve the detection performance of Chagas disease in
environments characterized by scarce and imbalanced data.
In the first stage (Stage 1), a binary classification model
estimates abnormal ECG scores associated with Chagas
disease. In the second stage (Stage 2), these scores are
combined with demographic features such as age and sex
to predict disease presence. Furthermore, for abnormalities
insufficiently represented in the real datasets, synthetic
ECGs generated by a simulator are incorporated as
supplementary training data.

The aim of this study is to enhance the detection accuracy
of Chagas disease under limited data conditions through a
two-stage approach that integrates deep learning with
simulator-based synthetic data generation.

2. Methods

The proposed framework consisted of two stages: Stagel
for estimating ECG abnormality scores and Stage2 for
binary classification of Chagas disease.

In Stagel, we constructed a binary classification model to
quantitatively evaluate ECG abnormalities associated with
Chagas disease. A ResNet18[6] architecture was employed,
with 12-lead ECGs as input, and preprocessing was applied
for each targeted abnormality class. A Sigmoid activation
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function was placed in the output layer to compute scores
corresponding to the abnormality labels. No handcrafted
features were designed; instead, raw ECG waveforms were
directly used as input. The resulting output scores were
stored as pseudo-labels and subsequently used as input
features for Stage?2.

To address the severe class imbalance in real-world data,
synthetic ECGs were generated for abnormalities
underrepresented in Chagas disease. These synthetic
signals were produced using a simulator based on Gaussian
distributions and physiological parameters, following the
method reported by Nonaka et al [5]. The generated
synthetic data were incorporated as supplementary training
data in Stagel.

In Stage2, a binary classification task was performed to
predict the presence or absence of Chagas disease. Raw
ECG waveforms were not directly utilized; instead, the
pseudo-labels derived from Stagel were combined with
demographic features. Specifically, the features consisted
of the Stagel output scores, age (scaled by 100), and sex
(encoded as male = 1, female = 0), resulting in a feature
vector of three dimensions plus the number of abnormal
ECQG classes considered. These features were used to train
a Random Forest classifier, which estimated the
probability of Chagas disease in a binary setting. An
overview of the pipeline is shown in Figure 1.
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Figure 1. The framework of our proposed method
3. Tables and figures
3.1. Datasets
This study utilized publicly available real-world ECG

datasets (PTB-XL [7] and SaMi-Trop [8]) in combination
with synthetic ECG data generated by a simulator. PTB-

XL was employed in both Stagel and Stage2. In Stagel, it
was used for training and evaluation of abnormal ECG
classification, targeting seven labels: first-degree
atrioventricular block (1AVB), incomplete right bundle
branch block (IRBBB), complete left bundle branch block
(CLBBB), long QT interval (LNGQT), acute myocardial
infarction (AMI), atrial fibrillation (AFIB), and left
posterior fascicular block (LPR). In Stage2, all PTB-XL
records were assigned to the negative class based on
demographic information, whereas SaMi-Trop served as
the positive class to construct a binary classification task
for Chagas disease.

For abnormalities that were present but insufficiently
represented in the real datasets—namely second-degree
atrioventricular block (2AVB; Wenckebach type/type 1)
and long QT interval (LNGQT)—synthetic ECGs were
generated using a simulator capable of reproducing known
waveform morphologies, thereby supplementing the
limited real data.

3.2.  Preprocessing

A unified preprocessing pipeline was applied to all
datasets. First, the sampling frequency of each ECG signal
was standardized by resampling through integer averaging
or linear interpolation, ensuring a uniform target frequency
of 500 Hz. When the waveform length was insufficient,
zero-padding was applied to standardize the input
dimensions. Subsequently, normalization was performed
by applying z-score standardization (mean = 0, variance =
1) to each ECG signal, thereby correcting for differences
in amplitude scaling across recordings.

3.3. Training setup and hyperparameters

The training was conducted on a Linux system equipped
with four NVIDIA RTX A5000 GPUs (24GB each),
CUDA 11.6, and Driver 510.47.03.

For Stagel, a ResNetl8-based multi-label classification
model was employed. The input consisted of 12-lead ECGs
(500 Hz, fixed length of 5000 time step), and the output
layer applied a sigmoid activation function to produce
scores for seven distinct abnormality labels. The Adam
optimizer was used, with the binary cross-entropy loss
function. The initial learning rate was set to 0.0005,
combined with a cosine annealing scheduler with warm-up.
Data augmentation was performed by applying both
temporal shift ratio and signal masking ratio. Training was
performed for 500 epochs with a batch size of 256, and
early stopping was implemented with a patience of 5,
evaluated every five epochs. The learning rate and
augmentation parameters were explored in preliminary
experiments, and the optimal values were adopted for
subsequent training.

For Stage2, the pseudo-labels obtained from Stagel were
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combined with demographic features to construct the
classification task. Specifically, the input consisted of the
pseudo-label scores, age, and sex (male = 1, female = 0),
resulting in a three-dimensional tabular feature vector. A
Random Forest classifier was employed, with the number
of decision trees set to 10, 20, or 50, the maximum tree
depth set to 5, 10, 20, or unrestricted, and class weights set
either with balancing or without weighting. These
hyperparameter combinations were explored, and model
performance was evaluated using five-fold cross-
validation with the area under the receiver operating
characteristic curve (ROC-AUC) as the primary metric.

3.4. Experimental conditions

Data split

For the PTB-XL dataset, the division was based on the
officially provided strat fold information. Specifically,
Folds 1-6 were used as training data for Stagel, Folds 7-8
as validation data for StageOl, and Folds 9-10 as
evaluation data for Stage2. For the SaMi-Trop dataset, all
cases were randomly divided into training, validation, and
test sets for use in Stage2.

Label

In Stagel, binary classification was performed for each of
the seven abnormalities in PTB-XL, namely 1AVB,
IRBBB, CLBBB, LNGQT, AMI, AFIB, and LPR, based
on the diagnostic labels provided in the dataset.

In Stage?2, a binary classification task for Chagas disease
was constructed by assigning all PTB-XL records to the
negative class and all SaMi-Trop records to the positive
class.

4. Results

All results reported in this section were obtained from the
held-out portion of the training data and not from the
hidden official test set.

4.1. Stagel: Optimization of the binary
classification model

To examine the effect of data augmentation, we
conducted parameter searches for temporal shift ratio and
signal masking ratio using first-degree atrioventricular
block (1AVB) as the target condition.

The temporal shift ratio was varied from 0.50 to 0.80 in
increments of 0.05 during training. As a result, considering
AUROC, F1 score, and loss in combination, a value of 0.55
was identified as the optimal setting.

With the temporal shift ratio fixed at 0.55, the signal
masking ratio was varied between 0.10 and 0.30 in
increments of 0.05. The best performance was achieved at
0.20.

Based on these results, subsequent experiments adopted a
temporal shift ratio of 0.55 and a signal masking ratio of
0.20 as the default augmentation settings.

The classification performance of the ResNet18 model
showed AUROC values of 0.94 for 1AVB, 0.74 for
IRBBB, 0.98 for CLBBB, 0.74 for LNGQT, 0.65 for AMI,
0.98 for AFIB, and 0.93 for LPR. Among these, 1AVB,
CLBBB, AFIB, and LPR achieved AUROC values greater
than 0.9. Furthermore, performance improved when input
leads were optimized, with AUROC increasing to 0.96 for
IRBBB using the V1 lead and to 0.85 for AMI using all 12
leads.

To compensate for abnormalities that were insufficiently
represented in real data, synthetic ECGs generated by the
simulator were incorporated. This led to performance
values of 2AVB= 0.81 and LNGQT = 0.77.

Tablel. Classification performance with synthetic ECGs.

Abnormality without synthetic ECG  with synthetic ECG
2AVB - 0.81
LNGQT 0.74 0.77

4.2. Stage2: Comparison of
classification models

binary

A total of 21,799 PTB-XL cases were used as negative
examples, while 1,959 SaMi-Trop cases were used as
positive examples.  In Stage2, we compared three
conditions: (i) models using demographic features only,
(i1) models incorporating abnormality scores derived from
the Stagel DNN without synthetic data, and (iii) models
additionally incorporating synthetic ECGs. The results are
summarized in Table 2.

Table 2. Challenge score performance of Stage2 binary
classification models (classification between PTB-XL and
SaMi-Trop, not the official setting.)

Model Demographics DNN + DNN +

only No synthetic data Synthetic data
RF 0.0871 0.6147 0.6098
XGBoost 0.0000 0.6319 0.6626

For the Random Forest classifier, using demographic
features alone resulted in a challenge score of 0.0871.
Incorporating DNN-derived abnormality scores without
synthetic data achieved 0.6147, while incorporating
synthetic ECGs yielded 0.6098.

For XGBoost, demographic features alone yielded a
challenge score of 0.0000. Incorporating DNN-derived
scores without synthetic data improved performance to
0.6319, and with synthetic ECGs further improved to
0.6626.
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4.3.  Official challenge submission

Table 3. Official Challenge results for team RISMU.

Training Validation Test
N/A N/A N/A

Ranking
Not ranked

Challenge scores for our selected entry (team RISMU),
including our team’s ranking on the hidden test set. We
used cross-validation on the public training data and did

not receive official scores on the hidden validation/test sets.

The team could not be scored on the hidden test data within
the allotted test time and therefore was not ranked.

5. Discussion

In this study, we adopted a two-stage framework to
capture ECG abnormalities characteristic of Chagas
disease. In Stagel, a ResNetl8-based binary classifier
estimated abnormality scores. Several abnormalities such
as 1AVB, CLBBB, AFIB, and LPR achieved AUROC
values >0.9. Accuracy further improved with tailored lead
selection: IRBBB detection improved with lead V1, and
AMI with all 12 leads. For abnormalities with few real
cases (2AVB, LNGQT), synthetic ECGs were generated.
As a result, 2AVB achieved an AUROC of 0.81, whereas
LNGQT improved only slightly (0.74—0.77), reflecting
the difficulty of reproducing QT prolongation.
In Stage2, Stagel abnormality scores were combined with
demographic features for binary classification using
Random Forest and XGBoost. Without deep learning—
derived  features, performance was negligible.
Incorporating abnormality scores raised AUROC to 0.5—
0.6, and further adding synthetic data improved it to 0.6626
with XGBoost. These results indicate that combining
demographic features with deep learning—based scores is
beneficial, and that gradient boosting in particular better
exploits synthetic data.

6. Conclusion

In this study, we proposed a two-stage framework
consisting of ECG abnormality score estimation (Stagel)
and binary classification (Stage2). The model achieved
high AUROC values across several ECG abnormalities,
confirming the effectiveness of lead selection and synthetic
data augmentation. Combining deep learning—derived
abnormality scores with demographic information
improved classification performance, with XGBoost

showing further gains when synthetic data were introduced.

This work demonstrates that integrating real and synthetic
data with deep learning can enhance Chagas disease
screening accuracy under data scarcity. Future work will
focus on external validation, improvement of synthetic
ECG generation, and extension to other cardiac disorders

toward developing a more generalizable screening system.
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